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Abstract

This paper presents an integrated micromechanical and structural framework for the nonlinear viscoelastic analysis
of laminated composite materials and structures. Each unidirectional lamina is idealized using the Aboudi four-cell
micromodel with incremental formulation in terms of the average strain and stress in the subcells. The fiber medium is
considered as transversely isotropic and linear elastic. The Schapery nonlinear viscoelastic model is used to describe the
isotropic viscoelastic behavior of the matrix subcells. A previously developed recursive-iterative method is employed for
the numerical integration of the Schapery model. The subcells’ constitutive models are nested through a numerical
stress-update algorithm. The latter is based on a predictor—corrector scheme that satisfies the fiber and matrix visco-
elastic constitutive relations along with the micromechanical equations in the form of traction continuity and strain
compatibility between the subcells. The effect of physical aging on creep is also examined. Several experimental creep
tests on off-axis specimen, available in the literature, are used to validate the formulation. The proposed material and
structural framework is general and can easily incorporate temperature, moisture, and physical aging effects. The
micromechanical model is numerically implemented within a shell-based nonlinear finite element (FE) by imposing a
plane stress constraint on its 3D formulation. Examples for nonlinear viscoelastic structural analyses are demonstrated
for a laminated panel and a composite ring.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Fiber reinforced polymeric (FRP) composites are often used in many modern engineering applications.
The effective response of these composites is usually time-dependent due to the existence of polymeric
matrix. The matrix viscoelastic behavior depends on its microstructure, previous thermomechanical state,
in addition to the current state of loading and environmental conditions. The moisture content can greatly
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decrease the energy required to produce deformation at a constant temperature due to the internal
reversible changes of the microstructure. In most amorphous polymers, environmental effects such as
increasing temperature and moisture content enhance the nonlinear deformation and deterioration of the
internal microstructure, especially when coupled with mechanical loading. Nonlinear viscoelastic analysis is
considered in the case of large stress levels, especially when combined with elevated temperatures or high
moisture conditions. The axial stiffness and strength of unidirectional FRP materials are not usually af-
fected by time-dependent effects, due to the dominant presence of the linear elastic fiber. Nonlinear and
time-dependent effects should be considered in the overall FRP constitutive material model in order to
achieve efficient designs that meet long-term performance.

Many studies have been performed to test and characterize the linear and nonlinear viscoelastic
behaviors of different FRP laminated composites. Off-axis tests have been conducted under different
loading levels. The viscoelastic parameters were characterized separately for each off-axis test. Lou and
Schapery (1971) performed experimental tests on glass and graphite epoxy composites with different off-axis
fiber orientations. Creep response was negligible in the axial (fiber) direction. Pronounced nonlinear vis-
coelastic behavior was shown in the creep tests for 30° (and higher) off-axis specimens at moderate levels of
applied stress. The four nonlinear viscoelastic parameters in the Schapery single integral creep equations
were assumed to be functions of the average octahedral shear stress in the matrix. A simplified relation for
the matrix octahedral stress was derived as a function of the applied in-plane stresses and the off-axis angle.
Yeow et al. (1979) used time-temperature superposition principle (TTSP) to determine the long-term
compliances of a unidirectional T300/934 graphite/epoxy composite system. Linear viscoelastic response
was shown along the fiber direction, while nonlinear viscoelastic response was shown in the transverse and
shear modes. Hiel et al. (1983) used Schapery’s nonlinear viscoelastic integral to characterize the long-term
viscoelastic behaviors of a T300/934 graphite/epoxy unidirectional composite calibrated from short-term
test results. The nonlinear integral relations were calibrated separately for the uniaxial transverse and axial-
shear modes. Tuttle and Brinson (1986) conducted creep-recovery test for off-axis T300/5208 graphite/
epoxy composites with 0°, 10°, and 90° angles. The viscoelastic parameters in the Schapery model were
taken as functions of matrix octahedral stress. The nonlinear viscoelastic model was combined with the
classical laminate theory (CLT) to perform nonlinear viscoelastic analysis of graphite—epoxy laminates
under in-plane loading. Accelerated method was used based on the time-temperature—stress-superposition
principle (TTSSP) in order to predict the long-term creep behavior.

The physical aging of polymers and polymeric composites has been considered. Struik (1978) defined
physical aging as the process that a polymeric material undergoes by a gradual continuation of the glass
formation below glass transition temperature (7). The aging material is not under thermodynamic equi-
librium (stable state). This is indicated by a molecular mobility and a slow process to establish equilibrium
over time, which cause its mechanical (elastic and viscoelastic) properties change with time. The long-term
mechanical behavior of FRP composites in a state below 7} is important for accurate analysis and design of
structures. Struik (1978) studied physical aging of various polymers and developed a model to predict long-
term viscoelastic behavior based on short-term test data. The momentary master curves (MMC) were
created for the short-term test data at various aging times. The effective time was developed to shift the
short-term test data using the aging shift factor in order to predict the long-term response. Brinson and
Gates (1995) used Struik physical aging theory to model the long-term responses of unidirectional lamina
with different off-axis angles. Their model was then used with the CLT to predict the long-term responses of
laminated composites. This study indicates a different rate of change in the shear and transverse modes of
viscoelastic response due to aging. Gates et al. (1997) studied the effects of physical aging on creep com-
pliances of IM7/K3B composite under tension and compression. Short-term creep tests (96 h) at various
temperatures and aging times were performed for laminates with [90];, and [£45], layup to determine the
transverse and shear responses. The long-term predictions (1500 h) compared well with the experimental
data. Pasricha et al. (1997) used the Schapery model with reduced effective time and recursive formulation
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to account for the effects of physical aging in laminated composites. The Schapery integral was separately
applied for shear and transverse modes. Bradshaw and Brinson (1999a) presented a method to determine
the physical aging properties from repeated creep relaxation tests under different isothermal conditions. The
effective time theory was employed in the Schapery’s hereditary integral equation. Bradshaw and Brinson
(1999b) predicted the mechanical response of laminated composites due to physical aging by incorporating
their model with the CLT. Each lamina was considered as thermorheologically simple material; therefore,
the physical aging effect was carried through the time shift factor. Different aging parameters were cali-
brated for the shear and transverse directions. Combined carbon fiber and thermoplastic polyamide resin
laminates were tested and were predicted. The predicted results showed good agreement with the experi-
mental data. Hu and Sun (2000) studied the physical aging effect within a linear viscoelastic range of IM7/
977-3 carbon/epoxy composites. Several off-axis coupons were tested under different aging time. Experi-
mental data showed different physical aging effects on the elastic and creep compliances. The transient creep
compliance was expressed separately for each aging time and off-axis angle. Shift factors and time shift rates
were introduced to create reference master curves in term of the effective compliances.

Micromechanical viscoelastic models, that explicitly recognize the multi-axial stress state of the con-
stituents, are unique because the time-dependent behavior is exclusively attributed to the polymeric matrix.
Furthermore, they can offer a clear advantage over homogenized anisotropic viscoelastic models by cali-
brating one or two compliance kernels due to the isotropic nature of the matrix. In addition, the ability to
predict the effective viscoelastic response for different fiber volume fractions (FVFs) is another advantage.
Finally, the three-dimensional (3D) micromechanical formulation allows for modeling the response of
multi-axial stress states. Schaffer and Adams (1981) used FE models of a unit-cell (UC) with the Schapery
model for the matrix to generate the effective nonlinear viscoelastic behavior of unidirectional composites.
FE predictions compared well for glass/epoxy under creep transverse compression including cure cycle
consideration. Aboudi (1990) and Sadkin and Aboudi (1989) applied the Schapery nonlinear viscoelastic
model for the matrix subcells of the method of cell (MOC). Nonlinear viscoelastic behavior, including
thermorheologically complex response to applied cyclic temperatures, were both modeled and were com-
pared with the FE UC results of Schaffer and Adams (1981). Yancey and Pindera (1990) used Aboudi’s
model to predict the linear creep response of graphite/epoxy. Barbero and Luciano (1995) formulated an
analytical model of creep and relaxation responses using the Laplace transformation for composite
materials having transversely isotropic fibers and linear viscoelastic matrix. Power law model was used for
the matrix phase. A unit cell model of a cylindrical fibers embedded in the matrix medium was periodically
distributed in the entire composite. Predictions were compared with experimental data obtained by Yancey
and Pindera (1990). Fisher and Brinson (2001) used the Mori-Tanaka micromechanical theory with vis-
coelastic formulations and considered the viscoelastic interphase between the fiber and matrix.

In this study the Aboudi (1991) four-subcell micromechanical model is reformulated and cast in an
incremental form in order to derive the effective nonlinear viscoelastic response of unidirectional com-
posites and integrated it as a constitutive model within a displacement-based FE. This was previously
introduced in the case of pultruded composites (Haj-Ali and Muliana, 2003). In this paper, nonlinear
viscoelastic behavior in laminated composites is addressed. The incremental and algorithm formulation at
both the microlevel and for the matrix constituents are addressed in detail in the first part. A recursive—
iterative integration method applied for the Schapery nonlinear 3D model is used for the isotropic matrix in
the proposed micromodel. The second part of this paper includes examining the above formulation by
modeling and predicting the nonlinear viscoelastic response for different composite material systems. Off-
axis experimental data performed on glass/epoxy (Lou and Schapery, 1971) and T300/5208 graphite/epoxy
(Tuttle and Brinson, 1986) are used for this purpose. Physical aging effect is also incorporated in the
proposed micromodel. Experimental data on IM7/977-3 carbon/epoxy composites performed by Hu and
Sun (2000) are used for calibration and prediction. Finally, the last part deals with FE viscoelastic
structural models including creep buckling analyses.
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2. A numerical integration method for the Schapery isotropic material model

A multi-axial nonlinear viscoelastic constitutive model for an isotropic polymeric matrix is formulated
in this section. The Schapery (1969) single integral constitutive model is used for this purpose. It can be
expressed as
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where Dy is the instantaneous uniaxial elastic compliance, AD is the uniaxial transient compliance, gy, g1,
g2, and a, are the nonlinear viscoelastic parameters. The parameters a,, ar, and a, are the stress, tem-
perature, and aging time-scaling factors, respectively. The term s is used to express the reduced-time. The
upper right superscript of a given term is used to denote a dependent variable of this term or function. In
general, the nonlinear material parameters: gy, g1, £, 4,, ar, and a, can depend on the stress, temper-
ature, moisture, among others. These functions are always positive and equal to one in the case of linear
viscoelastic behavior. Under fixed environmental conditions, the nonlinear parameters: gy, g1, g2, and a,
are assumed to be general polynomial functions of the effective octahedral stress. These are generally
expressed as
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where (o, B, 7,0, i=1,...,n,) are the calibration coefficients and 7, is the effective stress limit that

determines the end of the linear viscoelastic range.

The uniaxial integral in Eq. (1) can be generalized to describe the multi-axial (3D) strain—stress relations
for an isotropic medium. Furthermore, the deviatoric and volumetric parts are decoupled. The deviatoric
and volumetric strains in the 3D case are written as

1 1 4 Lo d(grS_r_)
=5 - (w'—y) 35274
€ = 8hS) 34, | &7 i 3)
1 1 ! t d gTO_r,
&g = ggf)Boaj(k + §gll /0 ABW'-v )%dr "

where Jy and B, are the instantaneous elastic shear and bulk compliances, respectively. The terms AJ and
AB are the transient shear and bulk compliances, respectively. Next, we further assume that the matrix
Poisson’s ratio, v, is time independent. This allows using the same nonlinear and transient parameters for
the 3D case in a single integral relation as
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Comparing the terms in Egs. (3) and (4) with those in Eq. (5) yields:
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Haj-Ali and Muliana (2004) proposed a recursive—iterative method to integrate the Schapery nonlinear
constitutive relation in Eq. (5). A summary of this formulation is presented in Appendix A for completion.
Stress components are chosen as the independent state variables. The formulation further assumes that the
incremental strain rate is known and fixed for each increment.

2.1. Isothermal physical aging effect on creep behavior

In this section, the previous viscoelastic nonlinear constitutive model is generalized to include physical
aging which can have different effects on both the elastic and transient creep compliances. Therefore, the
elastic and transient creep response due to aging are characterized independently. The material becomes
stiffer during the aging process (Struik, 1978), and an exponential function in term of aging time can be
chosen to model the changes in the material stiffness. It is assumed in this study that there is no physical
aging effect on the Poisson’s ratio. The transient creep strain that carries the aging effect is computed in the
effective time-scale domain, /, as proposed by Struik (1978). The strains can be mapped back to the real
time scale, 7, to predict the long-term creep response due to physical aging.

The time interval, d¢, is related to the effective time interval, d A, by the acceleration factor, a,,, which can
be expressed, at any time as

di =a,(r)dt (7)

a-(5) ®

where ¢, is the aging time at the start of the test, measured from the time when the material is rapidly cooled
down below its glass transition temperature, 7,. The momentary creep compliance curve can be constructed
through horizontal shifting in the logarithmic scale of creep compliance curves at different aging times. The
logarithmic shift rate, u, is defined as

dloga,,

H=- dlogt, ©)

The total effective time is then reduced to
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where ¢ is an integration variable for the time scale.
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Following the work by Pasricha et al. (1997), the effect of physical aging is incorporated into the
Schapery constitutive model by calculating creep response in the effective time scale, 4. Thus, the inte-
grations in Egs. (3) and (4) are carried over the 4 domain. The terms, which are involving the current
incremental time, A¢, are mapped to the incremental effective time, AA. The hereditary integrals (Egs. (A.6)
and (A.7)) are expressed, at the end of the current effective time /4 by

~ , 1 — exp[—/,AY’]
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where the reduced effective time increment is
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The deviatoric and volumetric creep strains in Egs. (A.9) and (A.10) are rewritten to incorporate the
physical aging effect as
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3. Micromechanical formulation

It is assumed that for a given heterogeneous periodic medium, it is possible to define a basic unit-cell
(UCQ) that represents its major geometrical and material characteristics. Each UC is divided into a number
of subcells. Traction continuity at an interface between the subcells is enforced using the average stresses of
each subcell. The strain compatibility is also expressed in terms of the average strains. This class of
approximate micromechanical models is referred herein as constant deformation cell (CDC) micromodels.
The subcell strain-interaction matrix, B*, which relates the subcell average strain increment vector, de*, to
the overall UC average strain increment, de, is defined as

Ns
de® = B9ds  where dg = % > o de® (16)
o=1

where o is the subcell number, V is the UC total volume, v* is the subcell volume, and an overbar denotes an
overall average quantity over the unit cell. The strain-interaction matrices can be determined by solving the
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UC’s governing equations, including the traction and compatibility along with the incremental stress—strain
relations. The incremental UC average stresses are expressed as

1 Ns 1 Ns .
T = — () 35 — — @cpB® qz = z 1
do V;v do V;U C de=Cde (17)

where C* is the current tangent stiffness matrix of the subcell and C is the UC effective tangent stiffness
matrix. In order to derive the strain-interaction matrices for a UC, the traction and displacement continuity
conditions must be imposed, and stress—strain relations must be invoked. It can be shown that a subcell
strain-interaction matrix is a function of subcell tangent stiffness and the relative volumes from all subcells.

A four-cell micromodel is derived next using the method of cells (MOC), Aboudi (1991). Aboudi’s model
has been shown to be well suited for highly nonlinear matrix response, such as that exhibited by metal
matrix composites. However, integration of the MOC formulation in general 3D analysis of composite
structures has been limited, perhaps because of the large computational effort that is needed. Therefore, it is
important to develop efficient stress update and correction algorithms for this model that are suitable for
nonlinear structural analysis. In this section, an incremental formulation of Aboudi’s model is presented in
terms of the average stresses and strains in the subcells. New stress update and correction algorithms are
developed. These can significantly reduce the computational effort that is needed when using this micro-
model. The new algorithms are formulated given a constant average strain rate for each time step, which
make them suitable for integration with FE constitutive framework.

The micromechanical model is shown in Fig. 1. The unidirectional composite, which consists of long
fibers arranged unidirectionally in the matrix system, is idealized as doubly periodic array of fibers with
rectangular cross section. A quarter UC that consists of four subcells is modeled due to symmetry. The first
subcell is a fiber constituent, while subcells 2, 3, and 4 represent the matrix constituents. The long fibers are
aligned in the x; direction. The other cross-section directions are referred to as the transverse directions.
The x; direction is called the out-of plane axis or lamina thickness direction. The total volume of the UC is
taken to be equal to one. The volumes of the four subcells are

Vi=bh Va=h(1—b) Vi=b(1—h) Vi=(1-b)(1-h) (18)

‘o fiber matrix . . . .
CECE % _ld_ea|Tze—d> H BE-H B
[ = =4 = = % ‘7—'

x; Unidirectional composite . //. . .

Doubly periodic array of rectangular fiber
% w ¥
—>

matrix (2) h

matrix (3)[matrix (4) (1--h)

»X>

Unit-cell model for unidirectional composite

Fig. 1. Micromodel of unidirectional composites.
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The notations used for the stress and strain vectors are
dO’;:c) = {dO']],dGzz, d0'33, d’L’]z7 d‘E|3, dT23} o = 17 e ,4

) (19)
dSk = {dSll,d822,d833,d’/12,d“/13,dV23} k= 1, .. .,6

The 3D nonlinear constitutive integration for the fiber and matrix constituents is performed separately
for each subcell. The fiber is linear elastic and transversely isotropic, while the matrix medium is visco-
elastic. The homogenization of the micromodel should satisfy displacement and traction continuity. Perfect
bond is assumed along the interfaces of the subcells. In the fiber direction, the four subcells satisfy the same
strain continuity relation. The axial average stress definition is used as a second independent relation in
order to relate the effective axial stress to the stresses in the subcells. The following equations summarize the

relations in the axial mode:
del" = del” = del?) = del¥ = dg 20)
Vidal” + 15de'® + 15detY + 14del? = da,

where overbar denotes an overall average quantity over the unit cell.

Along the interfaces between the subcells with normal in the x, direction, the in-plane stress components
a2, and 71, must satisfy traction continuity conditions. The total strain components &y, and y,, from subcells
1 and 2, and subcells 3 and 4, respectively should also satisfy strain compatibility conditions. These rela-
tions are written in an incremental form as

dol)) — dot?
daf) = d0(24>

4 D) - (21)
——de d =dz
T &+ V1 92 &
i 40
dey del! = ds
AT & +V +V4 82 &
1 2
dai) :dafﬂ
3 4
doi) =d051>
4 M _ (22)
d de) =d
m+%84+m+ o = da
V;
VjV®9+V o dey = dzy
3+ 3+ Vs

Considering interfaces between subcells with normal in the x; direction, the out-of-plane stress components
033 and 7,3 must satisfy traction continuity conditions. The total strain components ¢33 and y,; from subcells
1 and 3, and subcells 2 and 4, respectively, should also satisfy strain compatibility conditions. These
relations are expressed in incremental form as

4o = dot?
dagz) = dag4>
"
7 +1 7 dagl) + 7 + d83 =dzg; (23)
Vs

d delV = dz
N %+m£3 °
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dagl) = do?)
da(sz) = da?)

4 () £ 3 _ 4z (24)
d des’ = de
A 7 e E
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d des” = de
At Tl T

Finally, both types of interfaces should satisfy transverse shear stress continuity. Therefore, the trans-
verse shear stresses in the four subcells are equal to the effective transverse shear stress. The transverse shear
strains from the four subcells in the average strain definition are used to express the relations with the
effective transverse shear strain of the UC. The transverse shear relations are summarized as

daél) = doéz) = da(63) = dog‘) = dog

25
Videl) + 15 del + 13del” + v, del? = dg @)

Egs. (20)—(25) along with the stress—strain relations within each fiber and matrix subcells complete the
micromechanical formulation of the unidirectional lamina. These relations are used in incremental (rate)
form due to the nonlinear constitutive relations in the matrix subcells. Next, the strain components in the
subcells are grouped into two parts: (a) and (b). The first part corresponds to the incremental compatibility
equations and the second part is the traction continuity relations (homogencous equations). The two
groups of strain vectors are defined by

del = {dsgl), dsgz), d8§3) , d8§4), daél), dsg), dsil), dsf), dagl), ds@, dsgw, dsf), ds(ﬁl) } (26)
(1x13)

and
el = {de;2>, del? de? del del), del?, de | del® de?, del? | del® } (27)

(Ix11)

The set of equations (20)—(25), can be expressed in terms of the strain increments in the subcells after
substituting the incremental stress—strain relations. The rearrangement of the strain increments allows this
set to be transformed into:

dRr, I A de, D,

(13x1) (13x13)  (13x11) (13x1) (13%6)

dRo’ Aba Abb dS[, 0 (6x1)
(11x1) (11x13)  (11x11) (11x1) (11x6)

where dR, is the residual form of the stress relations (traction continuity) expressed incrementally in terms
of the strains in the subcells. The matrices that appear in Eq. (28) are listed below and can be identified by
examining Eqs. (18)—(25). The nonzero terms of A, are

1—h

h
- - — — - 1-b
Auw(9,5) = A (10,6) = Ay (11,7) = Ap(12,8) = A4,5(13,10) = 5 (29)

1-bl—h
bh

Zub(S, 1) == Zab(67 2) - 24117(77 3) - Zab(874) == Zab(l?), 9) -

Aw(13,11) =
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The nonzero terms of D, are

D.(1,1) =D,(2,1) =D,(3,1) = D,(4,1) = 1

D.(5.2) = Dy(6,2) = D(1,4) = D,(8,4) =,

_ — _ _ 1 (30)
D,(9.3) = D,(10,3) = D,(11,5) = D,(12,5) =

D,(9.3) = -

bh

The terms of 4, and 4,, matrices can be found in Appendix B. Only the inverse of the (11 x 11) submatrix
in Eq. (28) is needed to solve for de, and dg,. The strain-concentration matrices are determined by solving
dR, = 0 and dR, = 0 equations.

The micromechanical relations are exact only in the case of linear stress—strain relations in the fiber and
matrix subcells. Due to the nonlinear response in one or more of the subcells, the incremental relations will
usually violate the constitutive equations. Thus, an iterative correction scheme is needed in order to satisfy
both the micromechanical constraints and the constitutive equations. The tasks for the micromechanical
algorithm can be states as: given history variables in the subcells from previous converged solution and a
constant average strain rate for the unit-cell within the current time increment, update the effective stress,
effective stiffness, and the history variables at the end of the increment, as illustrated in Fig. 2.

3.1. Multi-scale structural framework

A general 3D multi-scale framework is proposed for the nonlinear analysis of laminated composite
structures. Fig. 3 illustrates the proposed analysis framework for multi-layered structures using both 3D or
shell based FE models. In the case of 3D elements, the sublaminate model (Pecknold and Haj-Ali, 1993,
Haj-Ali et al., 1993) represents the nonlinear effective response at each material point (Gaussian point). In
the case of shell elements, each layer is explicitly modeled with one or more integration points under plane
stress condition and the sublaminate model is reduced to the classical lamination theory in this case.
Constant transverse-shear cross-sectional stiffness is assumed for the shell elements. This assumption is
valid in the cases where the transverse stresses in the different layers are very small compared to the in-plane
stresses. The 3D micromechanical models provide for the effective nonlinear constitutive behavior for each
Gaussian point. The shell element’s effective through-thickness response is generated at select integration
points on its reference surface by integrating the effective micromechanical response over all Gaussian
points as shown in Fig. 3.

A nonlinear material model in a displacement-based FE code is required to update the stresses and the
tangent or algorithmic stiffness matrix for a given strain increment. The input data to this subroutine
consists of the fiber and matrix material properties, the calibrated viscoelastic parameters for the matrix
constituents, lamination sequence, and internal convergence tolerances as well as control flags. Different
convergence tolerances are used in the stress update and correction algorithms at the sublaminate, mi-
cromechanical, and matrix levels. An allocated storage for the solution dependent state variables (SDV), at
each material point (Gaussian point), is used and updated at the end of each convergent increment. This
vector contains all the history variables of the model at all levels of hierarchy.

4. Validation of the nonlinear constitutive framework

The proposed modeling framework is examined in its ability to predict the nonlinear viscoelastic
behavior of composite materials and structures. The effective response is generated from calibrated in situ
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3.2 Compute strain correction
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3.3 Evaluate residual vector R = (R,,R,) from Eq. (28).

IF |R'*™| < Tol THEN GOTO 4 and EXIT
ENDIF GOTO 3

4. Update effective stress, consistent tangent stiffness, and history variables
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Fig. 2. A micromechanical recursive-iterative integration algorithm for nonlinear viscoelastic behavior in laminated composite.

properties of the matrix and fiber constituents. To that end, different creep tests available in the literature
are used. Off-axis test results are available for glass/epoxy (Lou and Schapery, 1971) and T300/5208
graphite/epoxy (Tuttle and Brinson, 1986) composites. Prediction of the calibrated model is examined
against test results not used in the calibration process.

Lou and Schapery (1971) derived a micromechanical relation for the average matrix stress in a lamina
subjected to a plane stress state:

T =0y Op = VmOy Tp =Ty (31)
where v, is the matrix Poisson’s ratio. The matrix octahedral shear stress in the Schapery viscoelastic
integral is used to model the nonlinear behavior of the matrix and hence the composites. Excellent creep
and predictions were demonstrated by Lou and Schapery’s modeling approach. The current approach is
similar but employs a refined 3D micromodel that can ultimately be used in both 2D and 3D structural
models.
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Fig. 3. A multi-scale micromechanical-structural framework for nonlinear viscoelastic analysis of laminated composite structures.

Creep test results on glass/epoxy off-axis composite specimens reported by Lou and Schapery (1971)
were used for validation of the current modeling approach. The elastic properties for glass and epoxy are
given in Table 1. Linear viscoelastic calibration was performed using results from the 45° off-axis specimen
under the lowest applied axial stress (1.382 ksi). The Prony series coefficients were calibrated until the
overall response matches with the experimental data. The inverse of the retardation times (/,) were chosen
as J, = 10'™". The results from Prony series calibration are shown in Table 2. The limit for the matrix linear
viscoelastic response, 1o in Eq. (2), was determined from the different linear creep responses to be 1.4 ksi.
The viscoelastic parameter g, was calibrated using second order polynomial function from the 45° off-axis
test for applied stress of 3.448 ksi, as shown in Fig. 4. Other creep responses for the same angle were also
monitored during the calibration. The same process was repeated in the calibration of g, using the 30°

Table 1
Glass and epoxy elastic material properties, vf = 0.476
E GPa (ksi) v
Glass fiber 72.4 (10,500) 0.22

Epoxy matrix 4.3 (620) 0.31
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Table 2

Calibration Prony series coefficients for the epoxy matrix
n Jn (s7H D, x 107 MPa~! (ksi™')
1 1 2.18 (15.0)
2 107! 4.87 (33.6)
3 1072 5.08 (35.0)
4 1073 6.64 (45.8)
5 104 1.83 (12.6)
6 1073 2.90 (20.0)

0.4 T T T l T T T l T T T I T T T I T T T I T T T
6=45° ]

Axial creep strain (%)

0.1 | Experimental data used for Prony series calibration

I ) ]
—— Calibration and prediction Oy = 1.382 ksi
——— Fitted experimental data (Lou and Schapery (1971))

O.O-"'I"'II"II"I"'I"'

0 600 1200 1800 2400 3000 3600
Time (sec)

Fig. 4. Axial creep strain for 45° off-axis coupons.

off-axis test results. An effort was made to match the creep in both curves with applied stress levels of 6.897
and 8.058 ksi. Overall the nonlinear calibration strikes a balance between all nonlinear curves as seen in Fig.
5. The calibrated polynomial coefficients are shown in Fig. 6. The parameters g, and a, are fixed to one. The
predicted results are close to the experimental data as shown in Figs. 7 and 8 for 60° and 90° off-axis
coupons, respectively.

Another creep tests performed by Tuttle and Brinson (1986) on T300/5208 graphite/epoxy were used to
examine the micromodel. Off-axis specimens with 10° and 90° fiber orientations were subjected to 480 min
creep tests. The elastic properties for graphite and epoxy are given in Table 3. The effective properties of
T300/5208 composites with fiber volume fraction of 0.65 are shown in Table 4. Linear viscoelastic cali-
bration was performed from 10° off-axis coupon under the lowest applied shear stress (2.9 MPa), as shown
in Fig. 9. Prony series coefficients with four terms were calibrated, as seen in Table 5. The viscoelastic
parameters, gy, g2, and a, were also calibrated from the 10° off-axis creep results. The calibrated results are
shown in Fig. 10. The linear viscoelastic limit of the matrix effective stress, 79, was determined as 25 MPa.

Good predictions from the proposed micromodel are shown in Figs. 9 and 11 for the shear and transverse
creep responses, respectively.

4.1. Effect of physical aging on creep

Hu and Sun (2000) investigated the effect of physical aging on IM7/977-3 graphite/epoxy laminated
plates. Physical aging affects both the initial elastic and creep compliances. In this study the physical aging
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Fig. 7. Axial creep strain for 60° off-axis coupons.
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Table 3
Elastic material properties for T300-graphite and 5208 epoxy
GPa (ksi) Vi2 Va3
E“ E22 G12
Fiber (T300-graphite) 200 (29000) 3 (1886) 44 (6382) 0.39 0.40
Matrix (5208 epoxy) 4.6 (667) 0.35
Table 4
Elastic properties for T300/5208 graphite-epoxy lamina, vf = 0.65
GPa (ksi) V2 V23
E]] EZZ GIZ
Experimental data (Tuttle and 132.2 (19174) 9.434 (1368) 6.410 (930) 0.273
Brinson, 1986)
Micromodel (four-cell model) 131.6 (19087) 9.434 (1368) 6.435 (933) 0.377 0.425
ng L L | LI B B N | L L | LI B B |
=~ Fitted experimental data (Tuttle and Brinson (1986‘}) — 325 MPa ]
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=
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2
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Fig. 9. Shear creep strain from 10° off-axis specimens.
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Table 5
Calibrated Prony series coefficients for the 5208 epoxy matrix
Jn (57H D, short-term creep (480 min)x 107¢
MPa~! (ksi™!)
1 1 8.50 (58.61)
2 107! 8.36 (57.64)
3 1072 5.50 (37.92)
4 1073 33.80 (233.04)
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Fig. 10. In situ nonlinear viscoelastic parameters as function of the effective stress for epoxy (5208) matrix.
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Fig. 11. Transverse creep strain.

effect on the linear creep responses is considered and implemented in the viscoelastic constitutive frame-
work. The experimental data reported by Hu and Sun (2000) is used to calibrate and validate the prediction
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of the micromodel with an aging matrix. Four sets of off-axis specimens with different fiber orientations:
15°, 30°, 45°, and 90° were aged for different aging times, #.: 5, 12, 24, 48, 72, and 96 h. Creep tests were then
conducted for times less than 1/10 of their aging time. Relatively low axial tensile loads, with magnitudes:
43.4, 23.5, 19.7, and 15.2 MPa, were applied to the 15°, 30°, 45°, and 90° off-axis coupons, respectively.
All tests were under linear viscoelastic range. The glass transition temperature, 7,, of the studied graphite/
epoxy composite is 188-193 °C, while the tests were performed at a constant temperature of 104 °C.
The linear elastic effective compliances for each off-axis test are shown in Fig. 12. The elastic compliances
are defined at aging time 7, = 5 h. The compliances in the axial and transverse specimens were used to
calibrate the in situ elastic properties of the fiber and matrix. Fig. 12 also shows the predicted effective
elastic compliance from the micromodel along with test data for the off-axis specimen. Table 6 includes the
calibrated elastic properties for the IM7 fiber and 977-3 matrix used in the micromodel.

Next, the matrix viscoelastic parameters are calibrated to model the aging effect on the elastic and
transient creep responses. Elastic and transient creep experimental data are reproduced from the fitted
experimental equations of Hu and Sun (2000). Their experimental results show that elastic compliances of
all off-axis specimens decrease as aging time increases. Therefore, the matrix Young’s modulus in the
micromodel is modified to account for the effect of aging time. In this study, a Prony series is used to
describe the matrix modulus as a function of aging time:

1 2 T T | T T I T T | T T I T T T T /!
— - O Experimental data (Hu and Sun (2000)) -7 -
=) ; h o -
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> e
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— . e -
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@ ’ (e
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g °r e 7
| | 4 4
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Py T R R E S S R
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0

Fig. 12. Elastic compliance from IM7/977-3 off-axis tests at z, = 5 h.

Table 6
Elastic material properties for IM7 fiber and 977-3 matrix
GPa (ksi) Vi2 V23
En Ex G
IM7 fiber 256 (37129) 14.6 (2118) 56.6 (8209) 0.25 0.30

977-3 matrix 3.5 (508) 0.25




3478 R.M. Haj-Ali, A.H. Muliana | International Journal of Solids and Structures 41 (2004) 3461-3490

15 1 L L L L L B

L K -
S U [R5 VNS EEE) P\ SO,
S
12 e —]
x - X 2
Ky Ap =008 o = 1405 ) § =900
&) B Ay =001 o,=105 7
= 9 |
P L .
o
(=] EF—-—~— e - == ===y —-—=—=—=—o
ot
= sl 0 =450 _
g | (*) Experimental data used for calibration .
O - _————— g —
L ———— Experimental data (Hu and Sun (2000)) 0 = 300
g 3 Micromodel calibration and prediction ]
= L ]

- 150 ]

0 1 1 1 | 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1 I 1 1 1
0 100 200 300 400 500 600

aging time, te — t, ¢ (h)
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Table 7
Calibrated Prony series coefficients for the 977-3 matrix
n Jn (571 D, x 10~ MPa~' (ksi™")
1 1 1.00 (6.89)
2 107! 3.36 (23.17)
3 1072 3.50 (24.13)
4 10-3 4.58 (31.58)
5 107 32.60 (224.77)
6 103 20.00 (137.89)
K w
E“ = Ep 1+2Akexp<—7'€) (32)
h—1 t; — Lo ref

where E,, is the initial matrix Young’s modulus at reference time as shown in Table 6. The terms 4, and wy
are calibrated from the 90° off-axis coupon tests. Two terms are used in the above equation:
(4101) = (0.08,140.5) and (42mw,) = (0.01,10.5). The calibrated and predicted elastic compliances as a
function of aging time are shown in Fig. 13 for different off-axis specimens. Good prediction is shown by
the micromodel when the aging effect is attributed to the matrix Young’s modulus. The transient creep
parameters are calibrated from 45° off-axis coupon at the reference aging time, 7, = 5 h. Prony series
coefficients with six terms are used for the in situ matrix, as seen in Table 7.

The aging shift rate, u, Eq. (9), is used to characterize the aging effect on the transient creep response.
The acceleration factor, a,,, is characterized at each sampled aging time. The inverse of the acceleration
factor a,,, Eq. (8), is called the aging time-scale factor, a,, used in Eq. (1). The 45° off-axis creep tests, given
at t,: 12, 24, 48, 72, and 96 h were used to calibrate the matrix aging parameters. An a, value for the in situ
matrix was determined such that the overall creep from the micromodel exactly matches the 45° off-axis
creep at each sampled aging time. The calibrated aging time-scale is shown in logarithmic scale in Fig. 14.
The slope from a linear regression determines the aging shift rate, p, which in this case is 0.5827. The
calibrated transient creep curves for the five sampled aging times are shown in Fig. 16. The results show
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that using a constant aging shift rate is not sufficient to capture the creep response for aging times larger
than the reference time. In order to correct this mismatch, the previously calibrated five aging time-scale
values are used to yield a separate p value for each case. Next, the new five u values were assumed to be part
of a polynomial function of ¢,. The calibrated aging shift factor is shown in Fig. 15 and it is strongly
dependent on aging time. Fig. 16 shows the creep response for 45° off-axis using the new calibrated aging
time-scale with the u(¢,) polynomial function. In this case the creep response is better matched when using a
nonconstant aging shift rate. Next, the creep response is predicted by the micromodel and examined for
aged off-axis specimen, 0 = 15°, 30°, 45°, and 90°, that are not used in the calibration process. Fig. 17 shows
the transient creep strain as a function of time for all off-axis cases taken at different aging times. The
proposed aging modeling on the matrix in the micromodel is capable of capturing the overall multi-axial
creep-aging effect on the matrix.
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Fig. 16. Calibrated creep strain from 45° off-axis coupon at various aging time.

5. FE structural applications

Having established the efficiency and accuracy of the proposed nonlinear viscoelastic micromodels, we
proceed to implement this framework within a general purposed FE code. The material subroutine
(UMAT) in the ABAQUS (2002) FE code is used for this purpose. As previously described in Fig. 3, two
FE modeling approaches can be used for laminated composite structures. The first using shell based ele-
ments, where each layer is explicitly modeled with a micromodel during the nonlinear analysis. The second
approach employs 3D continuum brick elements with a sublaminate model used for the homogeneous
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nonlinear effective response of a repeating stacking sequence. In the following, two examples are presented
to demonstrate the integrated micromechanical-structural viscoelastic analysis method using layered shell

elements.

The first example is concerned with the viscoelastic response of composite panel subjected to an external
uniform pressure. Fig. 18 shows the geometry, boundary conditions, and the FE mesh of the panel along
with the layup used through the thickness. A total of 512 quadratic shell elements with 9 nodes and reduced
integration (S9R5) are used in the model. The material used for each layer is the T300/5208 graphite/epoxy,
where the elastic properties for the fiber and matrix are listed in Table 3. Originally, the Prony series



3482 R.M. Haj-Ali, A.H. Muliana | International Journal of Solids and Structures 41 (2004) 3461-3490

Geometric Model

C

C FE Mesh

Layup: [+ 45/90/0,/90/ F 45];
t = 0.09in = 2.28 mm
L = 14in = 355.6 mm
R = 15in = 381 mm
Hole diameter = 2 in = 50.8 mm

S-S = Simply supported edge
C = Clamped edge

Fig. 18. Geometry and FE mesh for the laminated composite panel.

parameters were calibrated from short-term experiments up to 480 min, as shown in Table 5. In order to
extend the range of analysis and examine the structural response for a long-term duration (1 year), a new
Prony series was calibrated such that the rate of creep is fixed after 480 min. The Prony coefficients from the
new calibrated series are listed in Table 8. The composite panel has [£45/90/0,/ F45], layup. The
geometry of this panel is taken from the post-buckling study performed by Knight and Starnes (1985). A
uniform pressure is applied on the panel’s top surface using a Heaviside step function. A static critical
buckling pressure, p.., is first computed. A geometric imperfect mesh is constructed using the first five eigen
modes and scaled by 1/20 of the panel’s thickness. Fig. 18 also shows a typical deformed configuration. A
relatively long-term creep response of the imperfect composite panel, under applied pressure of 0.8 and 0.9
Pers 1s shown in Fig. 19. An average radial displacement of the two points on the edge of the circular notch is

Table 8

Calibrated Prony series coefficients for the 5208 epoxy matrix
n o (571) D, x 1075 MPa~! (ksi™)
1 1 7.77 (53.57)
2 10! 6.32 (43.58)
3 1072 3.60 (24.82)
4 1073 7.44 (51.30)
5 107 3.95(27.23)
6 10-3 3.95(27.23)
7 10 4.96 (34.20)
8 1077 1.93 (13.31)
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Fig. 20. Post-buckling responses of the laminated composite circular ring.

defined and used to quantify the creep response of the panel. The time-dependent response in this problem
is not significantly nonlinear and viscoelastic buckling is not triggered.

The second structural application consists of a thick composite ring subjected to an external pressure.
The ring is made of the same lamina as the previous example. The geometry and layup are shown in Fig. 20.
The composite ring has outer radius of 30 in. and thickness of 0.27 in., with [0/90/ £ 45], layup. FE model
with a quadratic shell typed element is then generated. A concentric external pressure is applied along the
outer surface of the ring. Buckling analysis was first performed to obtain the critical load and the first ten
eigen-modes used in the post-buckling analysis. The post-buckling response of the ring is shown in Fig. 20
for two different imperfection amplitudes, e: D/100 and D/500. A typical post-buckling deformation is also
shown in Fig. 20. A stable post-buckling response is exhibited due to the positive stiffness that the structure
retains in the post-buckling range. Long-term creep under different pressure levels: 0.8-3.1 p., are simulated
with the initial imperfection e = D/100. Fig. 21(a)—(c) present the long-term creep response of the ring when
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Fig. 21. Long-term creep response.

subjected to step pressure loads reported as a fraction of the critical buckling pressure. Loading ratios
larger than one are also examined because of the positive residual stiffness of the ring after initial elastic
buckling. The three figures are grouped according to the deformed shape. For pi = 0.8-1.1, the deformed
shape follows the first mode and it is clear that viscoelastic buckling will ultimately occur for the cases
where the loading ratio is greater than one. The second group of curves has loading ratio of ﬁ = 1.3-1.7.
The deformed shape in these cases is combined from both mode one and two. It is very interesting to note
that while the applied load is greater than the buckling load, the likelihood of viscoelastic buckling has
decreased perhaps due to the transition from mode-I to mode-II deformed configurations. Fig. 21(c)
illustrates the curves for ﬁ = 1.8-3.1. Nonlinear response and early viscoelastic buckling is easily observed.
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6. Conclusion

A multi-scale micromechanical-structural viscoelastic analysis framework was examined. The nonlinear
viscoelastic response for the matrix constituents can be calibrated from the overall creep response of off-axis
laminated specimen. The material model was able to predict the multi-axial stress states that exist in dif-
ferent off-axis specimens that were not used for calibration. Modeling aging effects was also examined
against experimental data available in the literature. The calibrated micromodel was successful in predicting
the change in the elastic moduli due to aging and the effect of aging on creep. Finally, newly developed
efficient numerical stress updates at the microlevel and for the Schapery nonlinear model were both used
and implemented in a general purpose FE code to present a structural analysis modeling approach. Creep
and viscoelastic buckling were examined using the analysis method.
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Appendix A

A numerical integration method for the Schapery nonlinear viscoelastic response of isotropic materials is
described. An algorithm that is suitable for a displacement based FE material modeling environment with
constant strain rate increments is proposed based on Haj-Ali and Muliana (2004).

The uniaxial transient compliance in Eq. (5) is expressed using a Prony series as

AD¥ = 3D, (1 — expl- 2] (A1)

n=1

where N is the number of terms, D, is the nth coefficient of Prony series and 4, is the nth reciprocal of the
retardation time. Eq. (A.1) is then substituted for AJy and ABy in Eq. (6). Thus the deviatoric and vol-
umetric strains are expressed as

N N
= g oS, + 818555 > S — 81 Y Judl, (A.2)

n=1 n=1

t g Sl

dho = [ expldul’ — ) = (A3)
= 8Bo0ly + £1820% ZB -8 ZBﬂqkkn (A.4)

' ' , T ' dgéaik
Dt = ; exp[—7,(V —W)}Tdf (A.5)

A recursive integration forms for deviatoric and volumetric parts can be obtained from Egs. (A.3) and (A.5)
by dividing the integration into two parts. The first part includes the integral with limits (0,7 — A¢), i.e. up to
the previous time step. The limits of the second part are taken as (¢ — At, f), where ¢ is the current time. The
integration is carried by assuming a constant loading rate (linear function of gjo”) over the current time
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increment (A¢). Thus, the hereditary integral (Egs. (A.3) and (A.5)) at the end of the current time ¢ can be
obtained from

. 1 — exp[—/4,A¢/]
qf.j_n = exp[— /A, AY' ]qf] A (ggSf/. — A‘Sf} A’) A (A.6)

1 — exp[—/,AY/]
Qg = EXPI— LAY 1355 + (8507 — &5 At“ikm)T (A7)
where qﬁ;nA’ and qkkA’ terms in Egs. (A.3) and (A.5) are the hereditary integral for every term in the Prony

series at the end of previous time (¢ — Af). A reduced time increment is defined by

Ay =y =y (A.8)
The total deviatoric and volumetric strains are formulated by substituting Egs. (A.6) and (A.7) into Egs.
(A.2) and (A.4), respectively:

1 exp[— Ay’
5 |80+ g1 géZJ g’zZJ Lewadl] g

t

€ I
1 A o L —exp[=4LAY'] A (A9)
_Egg;Jn{exp[—)_nAwqf,/ 2 ’Tw,sgj ‘
_ 5t
=7J's, —d
1 — exp[-4AY]
E goBo+g gng gQZB T T
1, < o1 —exp[=AAY] (A.10)
-3¢ ;B {GXP [— A )g ' — & A’th(f’kﬁ’}
_Bakk Ve

The above equation allows for the incremental stress—strain calculation for a time increment Az, which is
then added to the total stress or strain from the previous time step (¢ — A¢). Egs. (A.9) and (A.10) are used
with some algebraic manipulations to derive the relations for the incremental deviatoric and volumetric
strains. These are written as

Ae —e —e’ Ar

N
—i A
Y Z (g} exp[— 2, AY'] — gi )"

1 — exp[—A,Ap ™ 1 — exp[—/, Ay’ -
2glzmzj{lm( i[Al//fAt -+ % Sy (A-11)

t 1—At
Agy = ey — €y

o |

—t At t At

28] expl—2, Ay — g ) gl

1 exp[— 2, AY' ] 1 —exp[-LAYT\]
3gt2 AtZB [ v At( nAl//t A a gtl )vnAwt O-ZkAt (A.IZ)

an

_ Rt
=Bo, —




R M. Haj-Ali, A.H. Muliana | International Journal of Solids and Structures 41 (2004) 3461-3490 3487

Eqgs. (A.11) and (A.12) are used to determine the unknown stress increment from a given strain increment
and the previous history state, i.e. g, A and qj;ﬁ’, n=1...N. The problem is that the nonlinear stress
functions at the current time (t) are not known. Therefore, an iterative method is needed in order to find the
correct stress and its corresponding nonlinear viscoelastic parameters. An iterative scheme is developed by
defining strain residuals. These residual equations can be defined by using either the incremental strains,
Eqgs. (A.11) and (A.12), or the total strains, Egs. (A.9) and (A.10), respectively. The equations are combined
to form the residual strain errors in the form:

1 .

_ 1 - —— 1 —r
_ J[O';j + g (Bt _Jt)o_;(kéij _Jt Ato_;m _ 5(Bt At _Jt A[)O—;;Atéij

1 N N
- {5 an(gﬁ exp[ — Z,AY] - g) CIf,nAt ZBn (g1 exp[ — 4,AY] — g1 At)q;{kﬁt] Oij
n=1 n=1
— exp[— A, Ay ] 1 —exp[-4,AY] _
Zgé AtZJ |: < 2 Alﬁl At t y) Alﬁ S;j m

— exp|— A, Ay Y] 1 —exp[-L,AY] _
9g£ AtZB |: T At( ;\,nAl//t At 1 Alﬁ 5[j(7;ckAt - Affl

(A.13)

A Jacobian matrix is formed by taking the derivative of the residual tensor with respect to the incremental
stress as

R, 1 oAG | o 1( o8 of
5.0 B — 76,6 P (e DY
oty 3B ~ )b+ 5o Tl {aAa’ %3 (6A6’ dAg ) 7

1 Ogj = A a1 —exp[=2,AY] —A
= 3 3As ZJ" CXP[—)mA‘//}qznt_g; ! T‘//t Sfj !

1 oa' ul o ,,AtqunA’ Sfj At o
—EaAE,&;Jnlexp[—ﬂnmﬂ Q2 ta

a

1 — exp| /LnAlp] gt
)LUAlp lj

(e
1 9g¢ & 1 — exp[—24,A¢]
9 gl ZB”{GXP[_)“ﬂAw}qIZkﬁI_g; At< 2 Al// >O-[ At:| ij
At(

9 0AG “—
InlAtgi A gtA 1— —J,A
oxp _AnAW(%ﬂk ) o« exp WMN

51:/}
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1. Input variables
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ENDIF GOTO 3
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kl

Fig. 22. Recursive-iterative algorithm for nonlinear isotropic viscoelastic model.

The complete numerical algorithm, which is used to provide the correct stress and its corresponding
nonlinear parameters for a given strain increment, is explained in Fig. 22.

Appendix B

The following equation is the detailed general form of the 4,, matrix of order (11x13) derived in the
micromodel for the unidirectional composite in Eq. (28):
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The 4, general form in the order of (11x11) in the micromechanical derivation in Eq. (28) is
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