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Abstract

This paper presents an integrated micromechanical and structural framework for the nonlinear viscoelastic analysis

of laminated composite materials and structures. Each unidirectional lamina is idealized using the Aboudi four-cell

micromodel with incremental formulation in terms of the average strain and stress in the subcells. The fiber medium is

considered as transversely isotropic and linear elastic. The Schapery nonlinear viscoelastic model is used to describe the

isotropic viscoelastic behavior of the matrix subcells. A previously developed recursive–iterative method is employed for

the numerical integration of the Schapery model. The subcells’ constitutive models are nested through a numerical

stress-update algorithm. The latter is based on a predictor–corrector scheme that satisfies the fiber and matrix visco-

elastic constitutive relations along with the micromechanical equations in the form of traction continuity and strain

compatibility between the subcells. The effect of physical aging on creep is also examined. Several experimental creep

tests on off-axis specimen, available in the literature, are used to validate the formulation. The proposed material and

structural framework is general and can easily incorporate temperature, moisture, and physical aging effects. The

micromechanical model is numerically implemented within a shell-based nonlinear finite element (FE) by imposing a

plane stress constraint on its 3D formulation. Examples for nonlinear viscoelastic structural analyses are demonstrated

for a laminated panel and a composite ring.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Fiber reinforced polymeric (FRP) composites are often used in many modern engineering applications.

The effective response of these composites is usually time-dependent due to the existence of polymeric

matrix. The matrix viscoelastic behavior depends on its microstructure, previous thermomechanical state,

in addition to the current state of loading and environmental conditions. The moisture content can greatly
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decrease the energy required to produce deformation at a constant temperature due to the internal

reversible changes of the microstructure. In most amorphous polymers, environmental effects such as

increasing temperature and moisture content enhance the nonlinear deformation and deterioration of the

internal microstructure, especially when coupled with mechanical loading. Nonlinear viscoelastic analysis is
considered in the case of large stress levels, especially when combined with elevated temperatures or high

moisture conditions. The axial stiffness and strength of unidirectional FRP materials are not usually af-

fected by time-dependent effects, due to the dominant presence of the linear elastic fiber. Nonlinear and

time-dependent effects should be considered in the overall FRP constitutive material model in order to

achieve efficient designs that meet long-term performance.

Many studies have been performed to test and characterize the linear and nonlinear viscoelastic

behaviors of different FRP laminated composites. Off-axis tests have been conducted under different

loading levels. The viscoelastic parameters were characterized separately for each off-axis test. Lou and
Schapery (1971) performed experimental tests on glass and graphite epoxy composites with different off-axis

fiber orientations. Creep response was negligible in the axial (fiber) direction. Pronounced nonlinear vis-

coelastic behavior was shown in the creep tests for 30� (and higher) off-axis specimens at moderate levels of

applied stress. The four nonlinear viscoelastic parameters in the Schapery single integral creep equations

were assumed to be functions of the average octahedral shear stress in the matrix. A simplified relation for

the matrix octahedral stress was derived as a function of the applied in-plane stresses and the off-axis angle.

Yeow et al. (1979) used time–temperature superposition principle (TTSP) to determine the long-term

compliances of a unidirectional T300/934 graphite/epoxy composite system. Linear viscoelastic response
was shown along the fiber direction, while nonlinear viscoelastic response was shown in the transverse and

shear modes. Hiel et al. (1983) used Schapery’s nonlinear viscoelastic integral to characterize the long-term

viscoelastic behaviors of a T300/934 graphite/epoxy unidirectional composite calibrated from short-term

test results. The nonlinear integral relations were calibrated separately for the uniaxial transverse and axial-

shear modes. Tuttle and Brinson (1986) conducted creep-recovery test for off-axis T300/5208 graphite/

epoxy composites with 0�, 10�, and 90� angles. The viscoelastic parameters in the Schapery model were

taken as functions of matrix octahedral stress. The nonlinear viscoelastic model was combined with the

classical laminate theory (CLT) to perform nonlinear viscoelastic analysis of graphite–epoxy laminates
under in-plane loading. Accelerated method was used based on the time–temperature–stress-superposition

principle (TTSSP) in order to predict the long-term creep behavior.

The physical aging of polymers and polymeric composites has been considered. Struik (1978) defined

physical aging as the process that a polymeric material undergoes by a gradual continuation of the glass

formation below glass transition temperature (Tg). The aging material is not under thermodynamic equi-

librium (stable state). This is indicated by a molecular mobility and a slow process to establish equilibrium

over time, which cause its mechanical (elastic and viscoelastic) properties change with time. The long-term

mechanical behavior of FRP composites in a state below Tg is important for accurate analysis and design of
structures. Struik (1978) studied physical aging of various polymers and developed a model to predict long-

term viscoelastic behavior based on short-term test data. The momentary master curves (MMC) were

created for the short-term test data at various aging times. The effective time was developed to shift the

short-term test data using the aging shift factor in order to predict the long-term response. Brinson and

Gates (1995) used Struik physical aging theory to model the long-term responses of unidirectional lamina

with different off-axis angles. Their model was then used with the CLT to predict the long-term responses of

laminated composites. This study indicates a different rate of change in the shear and transverse modes of

viscoelastic response due to aging. Gates et al. (1997) studied the effects of physical aging on creep com-
pliances of IM7/K3B composite under tension and compression. Short-term creep tests (96 h) at various

temperatures and aging times were performed for laminates with [90]12 and ½�45�2s layup to determine the

transverse and shear responses. The long-term predictions (1500 h) compared well with the experimental

data. Pasricha et al. (1997) used the Schapery model with reduced effective time and recursive formulation
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to account for the effects of physical aging in laminated composites. The Schapery integral was separately

applied for shear and transverse modes. Bradshaw and Brinson (1999a) presented a method to determine

the physical aging properties from repeated creep relaxation tests under different isothermal conditions. The

effective time theory was employed in the Schapery’s hereditary integral equation. Bradshaw and Brinson
(1999b) predicted the mechanical response of laminated composites due to physical aging by incorporating

their model with the CLT. Each lamina was considered as thermorheologically simple material; therefore,

the physical aging effect was carried through the time shift factor. Different aging parameters were cali-

brated for the shear and transverse directions. Combined carbon fiber and thermoplastic polyamide resin

laminates were tested and were predicted. The predicted results showed good agreement with the experi-

mental data. Hu and Sun (2000) studied the physical aging effect within a linear viscoelastic range of IM7/

977-3 carbon/epoxy composites. Several off-axis coupons were tested under different aging time. Experi-

mental data showed different physical aging effects on the elastic and creep compliances. The transient creep
compliance was expressed separately for each aging time and off-axis angle. Shift factors and time shift rates

were introduced to create reference master curves in term of the effective compliances.

Micromechanical viscoelastic models, that explicitly recognize the multi-axial stress state of the con-

stituents, are unique because the time-dependent behavior is exclusively attributed to the polymeric matrix.

Furthermore, they can offer a clear advantage over homogenized anisotropic viscoelastic models by cali-

brating one or two compliance kernels due to the isotropic nature of the matrix. In addition, the ability to

predict the effective viscoelastic response for different fiber volume fractions (FVFs) is another advantage.

Finally, the three-dimensional (3D) micromechanical formulation allows for modeling the response of
multi-axial stress states. Schaffer and Adams (1981) used FE models of a unit-cell (UC) with the Schapery

model for the matrix to generate the effective nonlinear viscoelastic behavior of unidirectional composites.

FE predictions compared well for glass/epoxy under creep transverse compression including cure cycle

consideration. Aboudi (1990) and Sadkin and Aboudi (1989) applied the Schapery nonlinear viscoelastic

model for the matrix subcells of the method of cell (MOC). Nonlinear viscoelastic behavior, including

thermorheologically complex response to applied cyclic temperatures, were both modeled and were com-

pared with the FE UC results of Schaffer and Adams (1981). Yancey and Pindera (1990) used Aboudi’s

model to predict the linear creep response of graphite/epoxy. Barbero and Luciano (1995) formulated an
analytical model of creep and relaxation responses using the Laplace transformation for composite

materials having transversely isotropic fibers and linear viscoelastic matrix. Power law model was used for

the matrix phase. A unit cell model of a cylindrical fibers embedded in the matrix medium was periodically

distributed in the entire composite. Predictions were compared with experimental data obtained by Yancey

and Pindera (1990). Fisher and Brinson (2001) used the Mori–Tanaka micromechanical theory with vis-

coelastic formulations and considered the viscoelastic interphase between the fiber and matrix.

In this study the Aboudi (1991) four-subcell micromechanical model is reformulated and cast in an

incremental form in order to derive the effective nonlinear viscoelastic response of unidirectional com-
posites and integrated it as a constitutive model within a displacement-based FE. This was previously

introduced in the case of pultruded composites (Haj-Ali and Muliana, 2003). In this paper, nonlinear

viscoelastic behavior in laminated composites is addressed. The incremental and algorithm formulation at

both the microlevel and for the matrix constituents are addressed in detail in the first part. A recursive–

iterative integration method applied for the Schapery nonlinear 3D model is used for the isotropic matrix in

the proposed micromodel. The second part of this paper includes examining the above formulation by

modeling and predicting the nonlinear viscoelastic response for different composite material systems. Off-

axis experimental data performed on glass/epoxy (Lou and Schapery, 1971) and T300/5208 graphite/epoxy
(Tuttle and Brinson, 1986) are used for this purpose. Physical aging effect is also incorporated in the

proposed micromodel. Experimental data on IM7/977-3 carbon/epoxy composites performed by Hu and

Sun (2000) are used for calibration and prediction. Finally, the last part deals with FE viscoelastic

structural models including creep buckling analyses.
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2. A numerical integration method for the Schapery isotropic material model

A multi-axial nonlinear viscoelastic constitutive model for an isotropic polymeric matrix is formulated

in this section. The Schapery (1969) single integral constitutive model is used for this purpose. It can be
expressed as
et � eðtÞ ¼ grt

0 D0r
t þ grt
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Z t

0

DDðwt	wsÞ d grs

2 rs
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where D0 is the instantaneous uniaxial elastic compliance, DD is the uniaxial transient compliance, g0, g1,
g2, and ar are the nonlinear viscoelastic parameters. The parameters ar, aT , and ae are the stress, tem-
perature, and aging time-scaling factors, respectively. The term w is used to express the reduced-time. The

upper right superscript of a given term is used to denote a dependent variable of this term or function. In

general, the nonlinear material parameters: g0, g1, g2, ar, aT , and ae can depend on the stress, temper-

ature, moisture, among others. These functions are always positive and equal to one in the case of linear

viscoelastic behavior. Under fixed environmental conditions, the nonlinear parameters: g0, g1, g2, and ar

are assumed to be general polynomial functions of the effective octahedral stress. These are generally

expressed as
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where ðai; bi; ci; di; i ¼ 1; . . . ; ngÞ are the calibration coefficients and s0 is the effective stress limit that

determines the end of the linear viscoelastic range.

The uniaxial integral in Eq. (1) can be generalized to describe the multi-axial (3D) strain–stress relations

for an isotropic medium. Furthermore, the deviatoric and volumetric parts are decoupled. The deviatoric

and volumetric strains in the 3D case are written as
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where J0 and B0 are the instantaneous elastic shear and bulk compliances, respectively. The terms DJ and
DB are the transient shear and bulk compliances, respectively. Next, we further assume that the matrix

Poisson’s ratio, m, is time independent. This allows using the same nonlinear and transient parameters for

the 3D case in a single integral relation as
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Comparing the terms in Eqs. (3) and (4) with those in Eq. (5) yields:
J0 ¼ 2ð1þ mÞD0 B0 ¼ 3ð1	 2mÞD0

DJðwÞ ¼ 2ð1þ mÞDDðwÞ DBðwÞ ¼ 3ð1	 2mÞDDðwÞ
ð6Þ
Haj-Ali and Muliana (2004) proposed a recursive–iterative method to integrate the Schapery nonlinear

constitutive relation in Eq. (5). A summary of this formulation is presented in Appendix A for completion.

Stress components are chosen as the independent state variables. The formulation further assumes that the

incremental strain rate is known and fixed for each increment.
2.1. Isothermal physical aging effect on creep behavior

In this section, the previous viscoelastic nonlinear constitutive model is generalized to include physical

aging which can have different effects on both the elastic and transient creep compliances. Therefore, the

elastic and transient creep response due to aging are characterized independently. The material becomes

stiffer during the aging process (Struik, 1978), and an exponential function in term of aging time can be
chosen to model the changes in the material stiffness. It is assumed in this study that there is no physical

aging effect on the Poisson’s ratio. The transient creep strain that carries the aging effect is computed in the

effective time-scale domain, k, as proposed by Struik (1978). The strains can be mapped back to the real

time scale, t, to predict the long-term creep response due to physical aging.

The time interval, dt, is related to the effective time interval, dk, by the acceleration factor, ate , which can

be expressed, at any time as
dk ¼ ateðtÞdt ð7Þ
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ð8Þ
where te is the aging time at the start of the test, measured from the time when the material is rapidly cooled

down below its glass transition temperature, Tg. The momentary creep compliance curve can be constructed
through horizontal shifting in the logarithmic scale of creep compliance curves at different aging times. The

logarithmic shift rate, l, is defined as
l ¼ 	 d logate
d logte

ð9Þ
The total effective time is then reduced to
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where n is an integration variable for the time scale.
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Following the work by Pasricha et al. (1997), the effect of physical aging is incorporated into the

Schapery constitutive model by calculating creep response in the effective time scale, k. Thus, the inte-

grations in Eqs. (3) and (4) are carried over the k domain. The terms, which are involving the current

incremental time, Dt, are mapped to the incremental effective time, Dk. The hereditary integrals (Eqs. (A.6)
and (A.7)) are expressed, at the end of the current effective time k by
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The deviatoric and volumetric creep strains in Eqs. (A.9) and (A.10) are rewritten to incorporate the

physical aging effect as
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3. Micromechanical formulation

It is assumed that for a given heterogeneous periodic medium, it is possible to define a basic unit-cell

(UC) that represents its major geometrical and material characteristics. Each UC is divided into a number
of subcells. Traction continuity at an interface between the subcells is enforced using the average stresses of

each subcell. The strain compatibility is also expressed in terms of the average strains. This class of

approximate micromechanical models is referred herein as constant deformation cell (CDC) micromodels.

The subcell strain-interaction matrix, Ba, which relates the subcell average strain increment vector, dea, to

the overall UC average strain increment, de, is defined as
deðaÞ ¼ BðaÞde where de ¼ 1

V

XNs

a¼1

vðaÞ deðaÞ ð16Þ
where a is the subcell number, V is the UC total volume, va is the subcell volume, and an overbar denotes an

overall average quantity over the unit cell. The strain-interaction matrices can be determined by solving the
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UC’s governing equations, including the traction and compatibility along with the incremental stress–strain

relations. The incremental UC average stresses are expressed as
dr ¼ 1

V

XNs

a¼1

vðaÞ drðaÞ ¼ 1

V

XNs

a¼1

vðaÞCðaÞBðaÞ de ¼ Cde ð17Þ
where Ca is the current tangent stiffness matrix of the subcell and C is the UC effective tangent stiffness
matrix. In order to derive the strain-interaction matrices for a UC, the traction and displacement continuity

conditions must be imposed, and stress–strain relations must be invoked. It can be shown that a subcell

strain-interaction matrix is a function of subcell tangent stiffness and the relative volumes from all subcells.

A four-cell micromodel is derived next using the method of cells (MOC), Aboudi (1991). Aboudi’s model

has been shown to be well suited for highly nonlinear matrix response, such as that exhibited by metal

matrix composites. However, integration of the MOC formulation in general 3D analysis of composite

structures has been limited, perhaps because of the large computational effort that is needed. Therefore, it is

important to develop efficient stress update and correction algorithms for this model that are suitable for
nonlinear structural analysis. In this section, an incremental formulation of Aboudi’s model is presented in

terms of the average stresses and strains in the subcells. New stress update and correction algorithms are

developed. These can significantly reduce the computational effort that is needed when using this micro-

model. The new algorithms are formulated given a constant average strain rate for each time step, which

make them suitable for integration with FE constitutive framework.

The micromechanical model is shown in Fig. 1. The unidirectional composite, which consists of long

fibers arranged unidirectionally in the matrix system, is idealized as doubly periodic array of fibers with

rectangular cross section. A quarter UC that consists of four subcells is modeled due to symmetry. The first
subcell is a fiber constituent, while subcells 2, 3, and 4 represent the matrix constituents. The long fibers are

aligned in the x1 direction. The other cross-section directions are referred to as the transverse directions.

The x3 direction is called the out-of plane axis or lamina thickness direction. The total volume of the UC is

taken to be equal to one. The volumes of the four subcells are
V1 ¼ bh V2 ¼ hð1	 bÞ V3 ¼ bð1	 hÞ V4 ¼ ð1	 bÞð1	 hÞ ð18Þ
fiber matrix

fiber( 1) matrix (2)

matrix (3) matrix (4)

Unidirectional composite

Unit-cell model for unidirectional composite

X2

X3
b1 1-b

h

(1--h)

idealized

Doubly periodic array of rectangular fiber

x2

x3

x1

Fig. 1. Micromodel of unidirectional composites.
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The notations used for the stress and strain vectors are
drðaÞ
k ¼ fdr11; dr22; dr33; ds12; ds13; ds23g a ¼ 1; . . . ; 4

deðaÞk ¼ fde11; de22; de33; dc12; dc13; dc23g k ¼ 1; . . . ; 6
ð19Þ
The 3D nonlinear constitutive integration for the fiber and matrix constituents is performed separately
for each subcell. The fiber is linear elastic and transversely isotropic, while the matrix medium is visco-

elastic. The homogenization of the micromodel should satisfy displacement and traction continuity. Perfect

bond is assumed along the interfaces of the subcells. In the fiber direction, the four subcells satisfy the same

strain continuity relation. The axial average stress definition is used as a second independent relation in

order to relate the effective axial stress to the stresses in the subcells. The following equations summarize the

relations in the axial mode:
deð1Þ1 ¼ deð2Þ1 ¼ deð3Þ1 ¼ deð4Þ1 ¼ de1

V1 drð1Þ
1 þ V2 drð2Þ

1 þ V3 drð3Þ
1 þ V4 drð4Þ

1 ¼ dr1

ð20Þ
where overbar denotes an overall average quantity over the unit cell.

Along the interfaces between the subcells with normal in the x2 direction, the in-plane stress components

r22 and s12 must satisfy traction continuity conditions. The total strain components e22 and c12 from subcells

1 and 2, and subcells 3 and 4, respectively should also satisfy strain compatibility conditions. These rela-

tions are written in an incremental form as
drð1Þ
2 ¼ drð2Þ

2

drð3Þ
2 ¼ drð4Þ

2

V1
V1 þ V2

deð1Þ2 þ V2
V1 þ V2

deð2Þ2 ¼ de2

V3
V3 þ V4

deð3Þ2 þ V4
V3 þ V4

deð4Þ2 ¼ de2

ð21Þ
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V3
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V3 þ V4

deð4Þ4 ¼ de4

ð22Þ
Considering interfaces between subcells with normal in the x3 direction, the out-of-plane stress components
r33 and s13 must satisfy traction continuity conditions. The total strain components e33 and c13 from subcells

1 and 3, and subcells 2 and 4, respectively, should also satisfy strain compatibility conditions. These

relations are expressed in incremental form as
drð1Þ
3 ¼ drð3Þ

3

drð2Þ
3 ¼ drð4Þ

3

V1
V1 þ V3

deð1Þ3 þ V3
V1 þ V3

deð3Þ3 ¼ de3

V2
V2 þ V4

deð2Þ3 þ V4
V2 þ V4

deð4Þ3 ¼ de3

ð23Þ



R.M. Haj-Ali, A.H. Muliana / International Journal of Solids and Structures 41 (2004) 3461–3490 3469
drð1Þ
5 ¼ drð3Þ

5

drð2Þ
5 ¼ drð4Þ

5

V1
V1 þ V3

deð1Þ5 þ V3
V1 þ V3

deð3Þ5 ¼ de5

V2
V2 þ V4

deð2Þ5 þ V4
V2 þ V4

deð4Þ5 ¼ de5

ð24Þ
Finally, both types of interfaces should satisfy transverse shear stress continuity. Therefore, the trans-

verse shear stresses in the four subcells are equal to the effective transverse shear stress. The transverse shear

strains from the four subcells in the average strain definition are used to express the relations with the

effective transverse shear strain of the UC. The transverse shear relations are summarized as
drð1Þ
6 ¼ drð2Þ

6 ¼ drð3Þ
6 ¼ drð4Þ

6 ¼ dr6

V1 deð1Þ6 þ V2 deð2Þ6 þ V3 deð3Þ6 þ V4 deð4Þ6 ¼ de6
ð25Þ
Eqs. (20)–(25) along with the stress–strain relations within each fiber and matrix subcells complete the

micromechanical formulation of the unidirectional lamina. These relations are used in incremental (rate)
form due to the nonlinear constitutive relations in the matrix subcells. Next, the strain components in the

subcells are grouped into two parts: (a) and (b). The first part corresponds to the incremental compatibility

equations and the second part is the traction continuity relations (homogeneous equations). The two

groups of strain vectors are defined by
deTa
ð1�13Þ

¼ deð1Þ1 ; deð2Þ1 ; deð3Þ1 ;deð4Þ1 ; deð1Þ2 ; deð3Þ2 ; deð1Þ4 ;deð3Þ4 ; deð1Þ3 ; deð2Þ3 ; deð1Þ5 ;deð2Þ5 ; deð1Þ6

n o
ð26Þ
and
deTb
ð1�11Þ

¼ deð2Þ2 ; deð4Þ2 ; deð2Þ4 ;deð4Þ4 ; deð3Þ3 ; deð4Þ3 ; deð3Þ5 ;deð4Þ5 ; deð2Þ6 ; deð3Þ6 ; deð4Þ6

n o
ð27Þ
The set of equations (20)–(25), can be expressed in terms of the strain increments in the subcells after
substituting the incremental stress–strain relations. The rearrangement of the strain increments allows this

set to be transformed into:
dRe
ð13�1Þ
––

dRr
ð11�1Þ

8><
>:

9>=
>; ¼

I
ð13�13Þ

Aab
ð13�11Þ

Aba
ð11�13Þ

Abb
ð11�11Þ

2
64

3
75

dea
ð13�1Þ
––

deb
ð11�1Þ

8><
>:

9>=
>;	

Da
ð13�6Þ
––

0
ð11�6Þ

2
64

3
75
(

de
ð6�1Þ

)
ð28Þ
where dRr is the residual form of the stress relations (traction continuity) expressed incrementally in terms

of the strains in the subcells. The matrices that appear in Eq. (28) are listed below and can be identified by
examining Eqs. (18)–(25). The nonzero terms of Aab are
Aabð5; 1Þ ¼ Aabð6; 2Þ ¼ Aabð7; 3Þ ¼ Aabð8; 4Þ ¼ Aabð13; 9Þ ¼
1	 h
h

Aabð9; 5Þ ¼ Aabð10; 6Þ ¼ Aabð11; 7Þ ¼ Aabð12; 8Þ ¼ Aabð13; 10Þ ¼
1	 b
b

Aabð13; 11Þ ¼
1	 b1	 h

bh

ð29Þ
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The nonzero terms of Da are
Dað1; 1Þ ¼ Dað2; 1Þ ¼ Dað3; 1Þ ¼ Dað4; 1Þ ¼ 1

Dað5; 2Þ ¼ Dað6; 2Þ ¼ Dað7; 4Þ ¼ Dað8; 4Þ ¼
1

h

Dað9; 3Þ ¼ Dað10; 3Þ ¼ Dað11; 5Þ ¼ Dað12; 5Þ ¼
1

b

Dað9; 3Þ ¼
1

bh

ð30Þ
The terms of Aba and Abb matrices can be found in Appendix B. Only the inverse of the (11 · 11) submatrix

in Eq. (28) is needed to solve for dea and deb. The strain-concentration matrices are determined by solving

dRr ¼ 0 and dRe ¼ 0 equations.
The micromechanical relations are exact only in the case of linear stress–strain relations in the fiber and

matrix subcells. Due to the nonlinear response in one or more of the subcells, the incremental relations will

usually violate the constitutive equations. Thus, an iterative correction scheme is needed in order to satisfy

both the micromechanical constraints and the constitutive equations. The tasks for the micromechanical

algorithm can be states as: given history variables in the subcells from previous converged solution and a

constant average strain rate for the unit-cell within the current time increment, update the effective stress,

effective stiffness, and the history variables at the end of the increment, as illustrated in Fig. 2.

3.1. Multi-scale structural framework

A general 3D multi-scale framework is proposed for the nonlinear analysis of laminated composite
structures. Fig. 3 illustrates the proposed analysis framework for multi-layered structures using both 3D or

shell based FE models. In the case of 3D elements, the sublaminate model (Pecknold and Haj-Ali, 1993,

Haj-Ali et al., 1993) represents the nonlinear effective response at each material point (Gaussian point). In

the case of shell elements, each layer is explicitly modeled with one or more integration points under plane

stress condition and the sublaminate model is reduced to the classical lamination theory in this case.

Constant transverse-shear cross-sectional stiffness is assumed for the shell elements. This assumption is

valid in the cases where the transverse stresses in the different layers are very small compared to the in-plane

stresses. The 3D micromechanical models provide for the effective nonlinear constitutive behavior for each
Gaussian point. The shell element’s effective through-thickness response is generated at select integration

points on its reference surface by integrating the effective micromechanical response over all Gaussian

points as shown in Fig. 3.

A nonlinear material model in a displacement-based FE code is required to update the stresses and the

tangent or algorithmic stiffness matrix for a given strain increment. The input data to this subroutine

consists of the fiber and matrix material properties, the calibrated viscoelastic parameters for the matrix

constituents, lamination sequence, and internal convergence tolerances as well as control flags. Different

convergence tolerances are used in the stress update and correction algorithms at the sublaminate, mi-
cromechanical, and matrix levels. An allocated storage for the solution dependent state variables (SDV), at

each material point (Gaussian point), is used and updated at the end of each convergent increment. This

vector contains all the history variables of the model at all levels of hierarchy.
4. Validation of the nonlinear constitutive framework

The proposed modeling framework is examined in its ability to predict the nonlinear viscoelastic
behavior of composite materials and structures. The effective response is generated from calibrated in situ



Fig. 2. A micromechanical recursive–iterative integration algorithm for nonlinear viscoelastic behavior in laminated composite.
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properties of the matrix and fiber constituents. To that end, different creep tests available in the literature

are used. Off-axis test results are available for glass/epoxy (Lou and Schapery, 1971) and T300/5208
graphite/epoxy (Tuttle and Brinson, 1986) composites. Prediction of the calibrated model is examined

against test results not used in the calibration process.

Lou and Schapery (1971) derived a micromechanical relation for the average matrix stress in a lamina

subjected to a plane stress state:
rm
yy ¼ ry rm

xx ¼ mmryy smxy ¼ sxy ð31Þ
where mm is the matrix Poisson’s ratio. The matrix octahedral shear stress in the Schapery viscoelastic

integral is used to model the nonlinear behavior of the matrix and hence the composites. Excellent creep

and predictions were demonstrated by Lou and Schapery’s modeling approach. The current approach is

similar but employs a refined 3D micromodel that can ultimately be used in both 2D and 3D structural
models.
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Fig. 3. A multi-scale micromechanical–structural framework for nonlinear viscoelastic analysis of laminated composite structures.
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Creep test results on glass/epoxy off-axis composite specimens reported by Lou and Schapery (1971)

were used for validation of the current modeling approach. The elastic properties for glass and epoxy are
given in Table 1. Linear viscoelastic calibration was performed using results from the 45� off-axis specimen

under the lowest applied axial stress (1.382 ksi). The Prony series coefficients were calibrated until the

overall response matches with the experimental data. The inverse of the retardation times (kn) were chosen

as kn ¼ 101	n. The results from Prony series calibration are shown in Table 2. The limit for the matrix linear

viscoelastic response, s0 in Eq. (2), was determined from the different linear creep responses to be 1.4 ksi.

The viscoelastic parameter g0 was calibrated using second order polynomial function from the 45� off-axis
test for applied stress of 3.448 ksi, as shown in Fig. 4. Other creep responses for the same angle were also

monitored during the calibration. The same process was repeated in the calibration of g2 using the 30�
Table 1

Glass and epoxy elastic material properties, vf ¼ 0:476

E GPa (ksi) m

Glass fiber 72.4 (10,500) 0.22

Epoxy matrix 4.3 (620) 0.31



Table 2

Calibration Prony series coefficients for the epoxy matrix

n kn (s	1) Dn � 10	6 MPa	1 (ksi	1)

1 1 2.18 (15.0)

2 10	1 4.87 (33.6)

3 10	2 5.08 (35.0)

4 10	3 6.64 (45.8)

5 10	4 1.83 (12.6)

6 10	5 2.90 (20.0)

Fig. 4. Axial creep strain for 45� off-axis coupons.
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off-axis test results. An effort was made to match the creep in both curves with applied stress levels of 6.897

and 8.058 ksi. Overall the nonlinear calibration strikes a balance between all nonlinear curves as seen in Fig.
5. The calibrated polynomial coefficients are shown in Fig. 6. The parameters g1 and ar are fixed to one. The

predicted results are close to the experimental data as shown in Figs. 7 and 8 for 60� and 90� off-axis

coupons, respectively.

Another creep tests performed by Tuttle and Brinson (1986) on T300/5208 graphite/epoxy were used to

examine the micromodel. Off-axis specimens with 10� and 90� fiber orientations were subjected to 480 min

creep tests. The elastic properties for graphite and epoxy are given in Table 3. The effective properties of

T300/5208 composites with fiber volume fraction of 0.65 are shown in Table 4. Linear viscoelastic cali-

bration was performed from 10� off-axis coupon under the lowest applied shear stress (2.9 MPa), as shown
in Fig. 9. Prony series coefficients with four terms were calibrated, as seen in Table 5. The viscoelastic

parameters, g0, g2, and ar were also calibrated from the 10� off-axis creep results. The calibrated results are

shown in Fig. 10. The linear viscoelastic limit of the matrix effective stress, s0, was determined as 25 MPa.

Good predictions from the proposed micromodel are shown in Figs. 9 and 11 for the shear and transverse

creep responses, respectively.
4.1. Effect of physical aging on creep

Hu and Sun (2000) investigated the effect of physical aging on IM7/977-3 graphite/epoxy laminated

plates. Physical aging affects both the initial elastic and creep compliances. In this study the physical aging



Fig. 5. Axial creep strain for 30� off-axis coupons.

Fig. 6. Nonlinear stress dependent parameters in the Schapery’s equations.

Fig. 7. Axial creep strain for 60� off-axis coupons.
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Fig. 8. Axial creep strain for transverse coupons.

Table 3

Elastic material properties for T300-graphite and 5208 epoxy

GPa (ksi) m12 m23

E11 E22 G12

Fiber (T300-graphite) 200 (29000) 3 (1886) 44 (6382) 0.39 0.40

Matrix (5208 epoxy) 4.6 (667) 0.35

Table 4

Elastic properties for T300/5208 graphite–epoxy lamina, vf ¼ 0:65

GPa (ksi) m12 m23

E11 E22 G12

Experimental data (Tuttle and

Brinson, 1986)

132.2 (19174) 9.434 (1368) 6.410 (930) 0.273

Micromodel (four-cell model) 131.6 (19087) 9.434 (1368) 6.435 (933) 0.377 0.425

Fig. 9. Shear creep strain from 10� off-axis specimens.
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Table 5

Calibrated Prony series coefficients for the 5208 epoxy matrix

n kn (s	1) Dn short-term creep (480 min)· 10	6

MPa	1 (ksi	1)

1 1 8.50 (58.61)

2 10	1 8.36 (57.64)

3 10	2 5.50 (37.92)

4 10	3 33.80 (233.04)

Fig. 10. In situ nonlinear viscoelastic parameters as function of the effective stress for epoxy (5208) matrix.

Fig. 11. Transverse creep strain.
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effect on the linear creep responses is considered and implemented in the viscoelastic constitutive frame-

work. The experimental data reported by Hu and Sun (2000) is used to calibrate and validate the prediction
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of the micromodel with an aging matrix. Four sets of off-axis specimens with different fiber orientations:

15�, 30�, 45�, and 90� were aged for different aging times, te: 5, 12, 24, 48, 72, and 96 h. Creep tests were then

conducted for times less than 1/10 of their aging time. Relatively low axial tensile loads, with magnitudes:

43.4, 23.5, 19.7, and 15.2 MPa, were applied to the 15�, 30�, 45�, and 90� off-axis coupons, respectively.
All tests were under linear viscoelastic range. The glass transition temperature, Tg, of the studied graphite/

epoxy composite is 188–193 �C, while the tests were performed at a constant temperature of 104 �C.
The linear elastic effective compliances for each off-axis test are shown in Fig. 12. The elastic compliances

are defined at aging time te ¼ 5 h. The compliances in the axial and transverse specimens were used to

calibrate the in situ elastic properties of the fiber and matrix. Fig. 12 also shows the predicted effective

elastic compliance from the micromodel along with test data for the off-axis specimen. Table 6 includes the

calibrated elastic properties for the IM7 fiber and 977-3 matrix used in the micromodel.

Next, the matrix viscoelastic parameters are calibrated to model the aging effect on the elastic and
transient creep responses. Elastic and transient creep experimental data are reproduced from the fitted

experimental equations of Hu and Sun (2000). Their experimental results show that elastic compliances of

all off-axis specimens decrease as aging time increases. Therefore, the matrix Young’s modulus in the

micromodel is modified to account for the effect of aging time. In this study, a Prony series is used to

describe the matrix modulus as a function of aging time:
Fig. 12. Elastic compliance from IM7/977-3 off-axis tests at te ¼ 5 h.

Table 6

Elastic material properties for IM7 fiber and 977-3 matrix

GPa (ksi) m12 m23

E11 E22 G12

IM7 fiber 256 (37129) 14.6 (2118) 56.6 (8209) 0.25 0.30

977-3 matrix 3.5 (508) 0.25



Fig. 13. Predicted elastic compliances for IM7/977-3 off-axis specimens as a function of aging time.

Table 7

Calibrated Prony series coefficients for the 977-3 matrix

n kn (s	1) Dn � 10	5 MPa	1 (ksi	1)

1 1 1.00 (6.89)

2 10	1 3.36 (23.17)

3 10	2 3.50 (24.13)

4 10	3 4.58 (31.58)

5 10	4 32.60 (224.77)

6 10	5 20.00 (137.89)
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Ete
m ¼ Em 1

"
þ
XK
k¼1

Ak exp



	 xj

te 	 te;ref

�#
ð32Þ
where Em is the initial matrix Young’s modulus at reference time as shown in Table 6. The terms Ak and xk

are calibrated from the 90� off-axis coupon tests. Two terms are used in the above equation:

ðA1x1Þ ¼ ð0:08; 140:5Þ and ðA2x2Þ ¼ ð0:01; 10:5Þ. The calibrated and predicted elastic compliances as a

function of aging time are shown in Fig. 13 for different off-axis specimens. Good prediction is shown by

the micromodel when the aging effect is attributed to the matrix Young’s modulus. The transient creep

parameters are calibrated from 45� off-axis coupon at the reference aging time, te ¼ 5 h. Prony series
coefficients with six terms are used for the in situ matrix, as seen in Table 7.

The aging shift rate, l, Eq. (9), is used to characterize the aging effect on the transient creep response.

The acceleration factor, ate , is characterized at each sampled aging time. The inverse of the acceleration

factor ate , Eq. (8), is called the aging time-scale factor, ae, used in Eq. (1). The 45� off-axis creep tests, given

at te: 12, 24, 48, 72, and 96 h were used to calibrate the matrix aging parameters. An ae value for the in situ

matrix was determined such that the overall creep from the micromodel exactly matches the 45� off-axis

creep at each sampled aging time. The calibrated aging time-scale is shown in logarithmic scale in Fig. 14.

The slope from a linear regression determines the aging shift rate, l, which in this case is 0.5827. The
calibrated transient creep curves for the five sampled aging times are shown in Fig. 16. The results show



Fig. 15. Shift rate factor versus aging time.

Fig. 14. Logarithmic plot of aging parameter versus aging time.

R.M. Haj-Ali, A.H. Muliana / International Journal of Solids and Structures 41 (2004) 3461–3490 3479
that using a constant aging shift rate is not sufficient to capture the creep response for aging times larger

than the reference time. In order to correct this mismatch, the previously calibrated five aging time-scale
values are used to yield a separate l value for each case. Next, the new five l values were assumed to be part

of a polynomial function of te. The calibrated aging shift factor is shown in Fig. 15 and it is strongly

dependent on aging time. Fig. 16 shows the creep response for 45� off-axis using the new calibrated aging

time-scale with the lðteÞ polynomial function. In this case the creep response is better matched when using a

nonconstant aging shift rate. Next, the creep response is predicted by the micromodel and examined for

aged off-axis specimen, h ¼ 15�, 30�, 45�, and 90�, that are not used in the calibration process. Fig. 17 shows

the transient creep strain as a function of time for all off-axis cases taken at different aging times. The

proposed aging modeling on the matrix in the micromodel is capable of capturing the overall multi-axial
creep-aging effect on the matrix.



Fig. 16. Calibrated creep strain from 45� off-axis coupon at various aging time.
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5. FE structural applications

Having established the efficiency and accuracy of the proposed nonlinear viscoelastic micromodels, we

proceed to implement this framework within a general purposed FE code. The material subroutine

(UMAT) in the ABAQUS (2002) FE code is used for this purpose. As previously described in Fig. 3, two

FE modeling approaches can be used for laminated composite structures. The first using shell based ele-
ments, where each layer is explicitly modeled with a micromodel during the nonlinear analysis. The second

approach employs 3D continuum brick elements with a sublaminate model used for the homogeneous



Fig. 17. Predicted creep strain for off-axis coupons at different aging hours.
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nonlinear effective response of a repeating stacking sequence. In the following, two examples are presented
to demonstrate the integrated micromechanical–structural viscoelastic analysis method using layered shell

elements.

The first example is concerned with the viscoelastic response of composite panel subjected to an external

uniform pressure. Fig. 18 shows the geometry, boundary conditions, and the FE mesh of the panel along

with the layup used through the thickness. A total of 512 quadratic shell elements with 9 nodes and reduced

integration (S9R5) are used in the model. The material used for each layer is the T300/5208 graphite/epoxy,

where the elastic properties for the fiber and matrix are listed in Table 3. Originally, the Prony series



Fig. 18. Geometry and FE mesh for the laminated composite panel.
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parameters were calibrated from short-term experiments up to 480 min, as shown in Table 5. In order to

extend the range of analysis and examine the structural response for a long-term duration (1 year), a new

Prony series was calibrated such that the rate of creep is fixed after 480 min. The Prony coefficients from the

new calibrated series are listed in Table 8. The composite panel has ½�45=90=02=� 45�s layup. The

geometry of this panel is taken from the post-buckling study performed by Knight and Starnes (1985). A
uniform pressure is applied on the panel’s top surface using a Heaviside step function. A static critical

buckling pressure, pcr, is first computed. A geometric imperfect mesh is constructed using the first five eigen

modes and scaled by 1/20 of the panel’s thickness. Fig. 18 also shows a typical deformed configuration. A

relatively long-term creep response of the imperfect composite panel, under applied pressure of 0.8 and 0.9

pcr, is shown in Fig. 19. An average radial displacement of the two points on the edge of the circular notch is
Table 8

Calibrated Prony series coefficients for the 5208 epoxy matrix

n kn (s	1) Dn � 10	5 MPa	1 (ksi	1)

1 1 7.77 (53.57)

2 10	1 6.32 (43.58)

3 10	2 3.60 (24.82)

4 10	3 7.44 (51.30)

5 10	4 3.95 (27.23)

6 10	5 3.95 (27.23)

7 10	6 4.96 (34.20)

8 10	7 1.93 (13.31)



Fig. 19. Out-of plane creep displacement responses.

Fig. 20. Post-buckling responses of the laminated composite circular ring.
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defined and used to quantify the creep response of the panel. The time-dependent response in this problem

is not significantly nonlinear and viscoelastic buckling is not triggered.

The second structural application consists of a thick composite ring subjected to an external pressure.

The ring is made of the same lamina as the previous example. The geometry and layup are shown in Fig. 20.

The composite ring has outer radius of 30 in. and thickness of 0.27 in., with ½0=90=� 45�6s layup. FE model
with a quadratic shell typed element is then generated. A concentric external pressure is applied along the

outer surface of the ring. Buckling analysis was first performed to obtain the critical load and the first ten

eigen-modes used in the post-buckling analysis. The post-buckling response of the ring is shown in Fig. 20

for two different imperfection amplitudes, e: D=100 and D=500. A typical post-buckling deformation is also

shown in Fig. 20. A stable post-buckling response is exhibited due to the positive stiffness that the structure

retains in the post-buckling range. Long-term creep under different pressure levels: 0.8–3.1 pcr are simulated

with the initial imperfection e ¼ D=100. Fig. 21(a)–(c) present the long-term creep response of the ring when



Fig. 21. Long-term creep response.
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subjected to step pressure loads reported as a fraction of the critical buckling pressure. Loading ratios

larger than one are also examined because of the positive residual stiffness of the ring after initial elastic

buckling. The three figures are grouped according to the deformed shape. For p
pcr

¼ 0:8–1.1, the deformed

shape follows the first mode and it is clear that viscoelastic buckling will ultimately occur for the cases

where the loading ratio is greater than one. The second group of curves has loading ratio of p
pcr

¼ 1:3–1.7.
The deformed shape in these cases is combined from both mode one and two. It is very interesting to note

that while the applied load is greater than the buckling load, the likelihood of viscoelastic buckling has

decreased perhaps due to the transition from mode-I to mode-II deformed configurations. Fig. 21(c)

illustrates the curves for p
pcr

¼ 1:8–3.1. Nonlinear response and early viscoelastic buckling is easily observed.
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6. Conclusion

A multi-scale micromechanical–structural viscoelastic analysis framework was examined. The nonlinear

viscoelastic response for the matrix constituents can be calibrated from the overall creep response of off-axis
laminated specimen. The material model was able to predict the multi-axial stress states that exist in dif-

ferent off-axis specimens that were not used for calibration. Modeling aging effects was also examined

against experimental data available in the literature. The calibrated micromodel was successful in predicting

the change in the elastic moduli due to aging and the effect of aging on creep. Finally, newly developed

efficient numerical stress updates at the microlevel and for the Schapery nonlinear model were both used

and implemented in a general purpose FE code to present a structural analysis modeling approach. Creep

and viscoelastic buckling were examined using the analysis method.
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Appendix A

A numerical integration method for the Schapery nonlinear viscoelastic response of isotropic materials is

described. An algorithm that is suitable for a displacement based FE material modeling environment with

constant strain rate increments is proposed based on Haj-Ali and Muliana (2004).

The uniaxial transient compliance in Eq. (5) is expressed using a Prony series as
DDwt ¼
XN
n¼1

Dnð1	 exp½	knw
t�Þ ðA:1Þ
where N is the number of terms, Dn is the nth coefficient of Prony series and kn is the nth reciprocal of the

retardation time. Eq. (A.1) is then substituted for DJw and DBw in Eq. (6). Thus the deviatoric and vol-
umetric strains are expressed as
etij ¼ gt
0J0S

t
ij þ gt
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A recursive integration forms for deviatoric and volumetric parts can be obtained from Eqs. (A.3) and (A.5)

by dividing the integration into two parts. The first part includes the integral with limits (0; t 	 Dt), i.e. up to
the previous time step. The limits of the second part are taken as (t 	 Dt; t), where t is the current time. The

integration is carried by assuming a constant loading rate (linear function of gs
2r

s) over the current time
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increment (Dt). Thus, the hereditary integral (Eqs. (A.3) and (A.5)) at the end of the current time t can be

obtained from
qtij;n ¼ exp½	knDwt�qt	Dt
ij;n þ gt

2S
t
ij

�
	 gt	Dt

2 St	Dt
ij


 1	 exp½	knDwt�
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where qt	Dt
ij;n and qt	Dt

kk;n terms in Eqs. (A.3) and (A.5) are the hereditary integral for every term in the Prony

series at the end of previous time (t 	 Dt). A reduced time increment is defined by
Dwt � wt 	 wt	Dt ðA:8Þ

The total deviatoric and volumetric strains are formulated by substituting Eqs. (A.6) and (A.7) into Eqs.

(A.2) and (A.4), respectively:
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The above equation allows for the incremental stress–strain calculation for a time increment Dt, which is

then added to the total stress or strain from the previous time step (t 	 Dt). Eqs. (A.9) and (A.10) are used

with some algebraic manipulations to derive the relations for the incremental deviatoric and volumetric
strains. These are written as
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Eqs. (A.11) and (A.12) are used to determine the unknown stress increment from a given strain increment

and the previous history state, i.e. qt	Dt
ij;n and qt	Dt

kk;n , n ¼ 1 . . .N . The problem is that the nonlinear stress

functions at the current time (t) are not known. Therefore, an iterative method is needed in order to find the

correct stress and its corresponding nonlinear viscoelastic parameters. An iterative scheme is developed by
defining strain residuals. These residual equations can be defined by using either the incremental strains,

Eqs. (A.11) and (A.12), or the total strains, Eqs. (A.9) and (A.10), respectively. The equations are combined

to form the residual strain errors in the form:
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A Jacobian matrix is formed by taking the derivative of the residual tensor with respect to the incremental

stress as
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Fig. 22. Recursive–iterative algorithm for nonlinear isotropic viscoelastic model.
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The complete numerical algorithm, which is used to provide the correct stress and its corresponding

nonlinear parameters for a given strain increment, is explained in Fig. 22.
Appendix B

The following equation is the detailed general form of the Aba matrix of order (11 · 13) derived in the

micromodel for the unidirectional composite in Eq. (28):
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Aba ¼
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The Abb general form in the order of (11 · 11) in the micromechanical derivation in Eq. (28) is
Abb ¼
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